skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ballance, Tanner"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. A series of files for the execution of finite element simulations of topologically interlocked assemblies are provided and can be executed with the finite element code ABAQUS (or similar). In all files the following structure is present: -- For each part of the assembly (frame, indenter, building block), a definition of nodes (*node) and sets of nodes (*nset), elements (*element) and set of elements (*elset) is provided. -- Instances of parts are defined an placed in the assembly at position according to the assembly plan. -- Parts frame and indenter are defined as rigid bodies (*rigid body) . Building blocks as linear elastic (*elastic). -- Boundary conditions and constraints are defined (*boundary) -- Surfaces (*surface), surface behavior (*surface behavior) and contact interactions (*contact) are given. -- A mass scaled explicit solution is used (*dynamic, explicit) -- Computed values are recorded (*node output, *energy output, *element output) ABAQUS inp file for a 6 by 6 assembly of hexagonal scutoids, coefficient of friction 0.4: HexScutoid6x6mu4.inp ABAQUS inp file for a 6 by 6 assembly of hexagonal scutoids, all building blocks fused to a monolithic system: HexScutoid6x6mu4_fused.inp ABAQUS inp file for a 7 by 7 assembly of hexagonal scutoids, coefficient of friction 0.4: HexScutoid6x6mu4.inp ABAQUS inp file for a 6 by 6 assembly of pentagonal scutoids, coefficient of friction 0.4: PentagonScutoid6x6mu4.inp ABAQUS inp file for a 7 by 7 assembly of pentagonal scutoids, coefficient of friction 0.4: PentagonScutoid6x6mu4.inp ABAQUS inp file for a 6 by 6 assembly of tetrahedra, coefficient of friction 0.4: Tetrahedra6x6mu4.inp ABAQUS inp file for a 7 by 7 assembly of tetrahedra, coefficient of friction 0.4: Tetrahedra7x7mu4.inp This work was supported by NSF Award 16622177. 
    more » « less
  2. This publication contains ABAQUS inp files supporting the publication Numerical study on wave propagation in a row of topologically interlocked tetrahedra in Granular Matter (2023), 25 (1) This study is concerned with the mechanics of wave propagation in a type of architectured, granular, material system. Specifically, we investigate wave propagation in a topologically interlocked material (TIM) system. TIM systems are assemblies of polyhedrons in which individual polyhedrons cannot be removed from the assembly without complete disassembly due to the geometric interlocking of the polyhedrons. The study employs an explicit finite element code to compute phase velocities, amplitude distributions, and wave patterns in a linear assembly of topologically interlocking tetrahedra. Tetrahedra are considered fully 3D linear elastic bodies interacting with neighboring tetrahedra by contact and friction. This publication contains the following inp files for use with the FE code ABAQUS: FullChainMu0V01Linear.inp -- A row of tetrahedra, constant contact stiffness, no friction, impact velocity 1.0 m/s. FullChainMu5V01Linear.inp -- A row of tetrahedra, constant contact stiffness, Coulomb friction with coefficient of friction 0.5, impact velocity 1.0 m/s. ExpAV01.inp -- A row of tetrahedra, variable contact stiffness, no friction, impact velocity 1.0 m/s. ExpBV01.inp -- A row of tetrahedra, variable contact stiffness, no friction, impact velocity 1.0 m/s. PartiallyFused.inp -- A row of tetrahedra with several tetrahedra fused together, constant contact stiffness, no friction, impact velocity 1.0 m/s. PartiallyFusedFric.inp -- A row of tetrahedra with several tetrahedra fused together, constant contact stiffness, Coulomb friction with coefficient of friction 0.5, impact velocity 1.0 m/s. 
    more » « less
  3. Topologically interlocking material (TIM) systems are constrained assemblies of building blocks with geometry such that individual unit elements cannot be removed from the assembly without complete disassembly. These assemblies can bear load in the absence of adhesive bonds. TIM systems with scutoid‐shaped building blocks are investigated. Scutoids are prism‐like shapes with two polygonal faces and contain vertices on the lateral sides which enable geometric interlocking. The quasi‐static mechanical behavior of two types of scutoid‐based TIM systems is investigated and compared to reference tetrahedron‐based TIM systems. TIM systems are realized as plate‐type assemblies and a central point‐force load is considered. The computational analysis is conducted with the finite‐element method. Scutoid‐based TIM systems are found, in aggregate, to match or exceed the performance of the tetrahedra‐based systems. It is documented that TIM systems in general, but scutoid‐based systems in particular, emerge to possess chiral characteristics. The combination of building block symmetry and assembly symmetry together determines the type of chirality in the mechanical response. Experimental data validates the computational finding. In summary, considering scutoids as building blocks for load‐carrying TIM assemblies opens the pathway to new classes of mechanical behavior in systems where structure and microstructure strongly interact with each other. 
    more » « less